1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
#include <stdlib.h>
#include "../core/char.h"
#include "../core/index.h"
#include "../sequence/sequence.h"
#include "../error/error.h"
#include "knowledge.h"
/* See "knowledge.h". */
int JH_knowledge_find_word_id
(
const struct JH_knowledge k [const restrict static 1],
const JH_char word [const restrict static 1],
const size_t word_length,
JH_index result [const restrict static 1]
)
{
/* This is a binary search */
int cmp;
JH_index i, current_min, current_max;
/* Handles the case where the list is empty ********************************/
current_max = k->words_length;
if (current_max == 0)
{
*result = 0;
return -1;
}
/***************************************************************************/
current_min = 0;
current_max -= 1;
while (current_min <= current_max)
{
i = (current_min + ((current_max - current_min) / 2));
cmp =
JH_word_cmp
(
word,
word_length,
k->words[k->words_sorted[i]].word,
k->words[k->words_sorted[i]].word_length
);
if (cmp > 0)
{
current_min = (i + 1);
if (current_min > current_max)
{
*result = current_min;
return -1;
}
}
else if (cmp < 0)
{
if ((current_min >= current_max) || (i == 0))
{
*result = current_min;
return -1;
}
current_max = (i - 1);
}
else
{
*result = k->words_sorted[i];
return 0;
}
}
*result = current_min;
return -1;
}
int JH_knowledge_find_markov_sequence
(
const JH_index sequence_id,
const struct JH_knowledge_sequence_collection sc [const restrict static 1],
JH_index result [const restrict static 1]
)
{
/* This is a binary search */
int cmp;
JH_index i, current_min, current_max;
if (sc->sequences_ref_length == 0)
{
*result = 0;
return -1;
}
current_min = 0;
current_max = (sc->sequences_ref_length - 1);
while (current_min <= current_max)
{
i = (current_min + ((current_max - current_min) / 2));
cmp =
JH_index_cmp
(
sequence_id,
sc->sequences_ref[sc->sequences_ref_sorted[i]].id
);
if (cmp > 0)
{
current_min = (i + 1);
if (current_min > current_max)
{
*result = current_min;
return -1;
}
}
else if (cmp < 0)
{
if ((current_min >= current_max) || (i == 0))
{
*result = current_min;
return -1;
}
current_max = (i - 1);
}
else
{
*result = sc->sequences_ref_sorted[i];
return 0;
}
}
*result = current_min;
return -1;
}
int JH_knowledge_find_sequence_target
(
const JH_index target_id,
const struct JH_knowledge_sequence_data sd [const restrict static 1],
JH_index result [const restrict static 1]
)
{
/* This is a binary search */
int cmp;
JH_index i, current_min, current_max;
if (sd->targets_length == 0)
{
*result = 0;
return -1;
}
current_min = 0;
current_max = (sd->targets_length - 1);
while (current_min <= current_max)
{
i = (current_min + ((current_max - current_min) / 2));
cmp = JH_index_cmp(target_id, sd->targets[i].id);
if (cmp > 0)
{
current_min = (i + 1);
if (current_min > current_max)
{
*result = current_min;
return -1;
}
}
else if (cmp < 0)
{
if ((current_min >= current_max) || (i == 0))
{
*result = current_min;
return -1;
}
current_max = (i - 1);
}
else
{
*result = i;
return 0;
}
}
*result = current_min;
return -1;
}
|